Improving the explainability of Random Forest classifier - user centered approach.

نویسندگان

  • Dragutin Petkovic
  • Russ Altman
  • Mike Wong
  • Arthur Vigil
چکیده

Machine Learning (ML) methods are now influencing major decisions about patient care, new medical methods, drug development and their use and importance are rapidly increasing in all areas. However, these ML methods are inherently complex and often difficult to understand and explain resulting in barriers to their adoption and validation. Our work (RFEX) focuses on enhancing Random Forest (RF) classifier explainability by developing easy to interpret explainability summary reports from trained RF classifiers as a way to improve the explainability for (often non-expert) users. RFEX is implemented and extensively tested on Stanford FEATURE data where RF is tasked with predicting functional sites in 3D molecules based on their electrochemical signatures (features). In developing RFEX method we apply user-centered approach driven by explainability questions and requirements collected by discussions with interested practitioners. We performed formal usability testing with 13 expert and non-expert users to verify RFEX usefulness. Analysis of RFEX explainability report and user feedback indicates its usefulness in significantly increasing explainability and user confidence in RF classification on FEATURE data. Notably, RFEX summary reports easily reveal that one needs very few (from 2-6 depending on a model) top ranked features to achieve 90% or better of the accuracy when all 480 features are used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network

The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...

متن کامل

Efficient Learning of Random Forest Classifier using Disjoint Partitioning Approach

Random Forest is an Ensemble Supervised Machine Learning technique. Research work in the area of Random Forest aims at either improving accuracy or improving performance. In this paper we are presenting our research towards improvement in learning time of Random Forest by proposing a new approach called Disjoint Partitioning. In this approach, we are using disjoint partitions of training datase...

متن کامل

Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Random Forest Based Approach

Determining the ultimate bearing capacity (UBC) is vital for design of shallow foundations. Recently, soft computing methods (i.e. artificial neural networks and support vector machines) have been used for this purpose. In this paper, Random Forest (RF) is utilized as a tree-based ensemble classifier for predicting the UBC of shallow foundations on cohesionless soils. The inputs of model are wi...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2018